MIT Students Strengthen Concrete With Recycled Plastic

MIT Students Strengthen Concrete with Recycled PlasticConcrete mixtures have evolved quite a bit over the course of the last several thousand years. Whereas the ancient Romans added volcanic ash their concrete to allow it to set underwater, modern concrete often features chemical admixtures to control its hardening rate and tensile strength. Engineers are always looking for ways to make stronger, more durable concrete mixtures, and a team of MIT undergrads may have just made a surprising new breakthrough.

The students set out to make industrial concrete stronger and more-environmentally friendly by experimenting with different additives. In their preliminary research, the students found that some types of plastic become stronger when exposed to gamma radiation. This gave them an idea: Why not use plastic bottles from the local recycling center to create a strengthening agent for their concrete mixture?

After developing their hypothesis, the students went to work gathering recycled plastic bottles and crushing them into fine particles with a ball mill and hand tools. Then, they used a cobalt-60 irradiator (which is often used to decontaminate food in commercial settings) to bombard the crushed plastic with gamma rays. After adding the irradiated plastic to a standard concrete mixture, the students ran a series of tests and found that the concrete was 15 percent stronger than their control samples.

“We know that the plastic makes it denser and forms particular crystalline structures in the material that make the final concrete stronger,” said assistant professor Michael Short in an interview.

Now, the team of students hopes to refine their technique and explore ways to make the plastic-infused concrete marketable to construction companies.  They’re currently working on a proposal to the National Science Foundation for additional funding. With continued research and development, the students may be able to create an innovative new type of exceptionally strong, eco-friendly cement.

Swiss Researchers Develop Ultra-Thin Concrete Roof Design

Swiss Researchers Develop Ultra-Thin Concrete Roof DesignConcrete is one of the oldest building materials in the world, and yet engineers are still finding creative new ways to incorporate concrete into their industrial designs. At ETH Zurich in Switzerland, for example, one group of researchers recently built a prototype roof design using a curved concrete that’s just 5 cm thick on average.

As you might expect, creating an ultra-thin concrete roof with dramatic postmodern curves is easier said than done.

The project was made possible thanks to advanced computer algorithms that were used to distribute forces evenly across the roof’s curves and contours. Instead of using a foam or wooden mold, the researchers applied the concrete to a flexible net of steel cables which was stretched and bent into the desired shape.  The roof also required a carefully-controlled concrete mix that could be sprayed on in an application process developed specifically for this project.

The end result is an eye-catching concrete roof that seems to defy the laws of physics.

At its thinnest point, the concrete is just 3 cm thick. Next year, the final version of the roof will be installed on an eco-friendly apartment complex in Zurich. The roof will also include a network of energy-efficient heating and cooling coils sandwiched between two layers of the ultra-thin concrete, and a photovoltaic solar film on top. Although the prototype design took about six months to get right, the researchers are hoping to build the final version in just eight to 10 weeks.  It’s an ambitious plan that could help the research team land more contracts for their thin concrete designs in the future.

Stay tuned for more updates on the latest developments in concrete design and construction from the folks at Bergen Mobile Concrete!

Yellowstone Installs New Walkways Made of “Thirsty” Concrete

Yellowstone Installs New Walkways Made of “Thirsty” ConcreteMost people visit Yellowstone National Park to take in the natural scenery and get away from the usual hustle and bustle of tech-filled lives. But as it turns out, Yellowstone is employing an interesting new concrete technology which could soon become a popular paving method elsewhere as well.

Yellowstone officials recently installed a 4,000-square-foot walkway in the park made of a unique new type of concrete called Flexi-Pave, according to Business Insider. Flexi-Pave consists of a mixture of tires, stone and a proprietary binder, and one square foot of the concrete is capable of absorbing an astounding 3,000 gallons of water per hour. This comes in handy in Yellowstone, since the park contains about 66 percent of all the geysers on the planet. The park’s new “thirsty” pathway absorbs water and distributes it back into aquifers before it can mix with local contaminates, which is a really big benefit in the ecologically-sensitive environment of Yellowstone.

Yellowstone might be the most notable example of Flexi-Pave’s applications, but it’s far from the first time the concrete has been used as a paving material. According to Kevin Bagnall, founder and CEO of the company that created Flexi-Pave, at least 200 cities throughout the US have begun using the eco-friendly concrete in their own paving projects.

At Bergen Mobile Concrete, we’re constantly monitoring the latest trends in construction in an effort to better serve our customers. Need a hand with your next concrete paving project? Give us a call at (201) 979-7550 today to get started!

Safety Tips for Working With Concrete

Safety Tips for Working With ConcreteAre you planning on pouring a new concrete driveway, patio or walkway outside your home or business? Concrete is an excellent option for all these applications and more. But before you start a DIY paving project, it’s important to take the proper safety precautions. Here are a few general guidelines that you should follow at all times.

Wear personal protective equipment.

When you work with wet concrete, you can sustain skin irritation and even burns if you aren’t careful. To reduce the risk of these issues, you should always wear personal protective equipment such as waterproof gloves, a dust mask, goggles and tall boots that cover your ankles.

Lift concrete carefully.

Whether you are removing slabs of old concrete or transporting wet concrete to your work site, be careful to lift properly so that you don’t injure yourself in the process. This means doing the bulk of the lifting with your knees, rather than your back. Our all-wheel-drive buggy can help you transport concrete safely as well.

Avoid exposure to concrete dust.

These paving projects can generate a lot of airborne concrete dust. When tearing up old concrete, you can keep dust to a minimum by wetting the surface before you start sawing or grinding. Be sure to wear your goggles and a dust mask or respirator as well to prevent dust from getting in your eyes, nose and mouth. Once you’re done working, take a shower to remove any residual dust left on your body. Launder your work clothes separately from other items to prevent cross contamination.

Need a hand with your next home improvement project? At Bergen Mobile Concrete, we’d be happy to help. Give us a call today at (201) 797-7550 to get started!

Save Time and Money With Our Metered Mobile Concrete Mixers

Concrete Pouring in Cold WeatherDo you need concrete for your next big job? You could go ahead and order a traditional ready mix concrete truck and have the concrete delivered to you. But the problem with this approach is that you will have to estimate how much concrete you need, and then hope that you don’t order either too much or too little material for the job. If you order too much, the excess constitutes a waste of money and resources for your business. If you order too little, on the other hand, the cost of ordering a second truck can be quite expensive as well.

Fortunately, the solution to this problem is surprisingly simple.

At Bergen Mobile Concrete, you can order a metered mobile concrete mixer that can mix just the right amount of concrete for your project on site. With a metered mixer, you’ll never have to pay for more concrete than you need. You also won’t have to stop in the middle of a project and wait for more concrete to arrive. Bergen Mobile Concrete will bring the maximum amount of concrete that you think you might use, mix it right on site and charge you for the exact amount you use.

In addition to their money-saving potential, metered mobile concrete mixers have a few other important benefits as well.

With our mobile mixer, we’re able to mix fresh concrete so that you know you’re getting the best possible material for your project. You can also still customize your concrete color and use admixtures just like you would be able to do with a concrete truck. It’s just a much simpler way to get the concrete you need, wherever you need it.

Interested in learning more about our same day concrete delivery services? Give us a call today at (201) 797-7550 to speak with a representative!

Researchers Solve Mystery Behind Ancient Roman Concrete

Researchers Solve Mystery Behind Ancient Roman ConcreteModern cement-based concrete might be pretty durable and long lasting, but it’s got nothing on the concrete used to build piers, sea walls and harbors in ancient Rome. Despite being partially submerged in corrosive saltwater for more than two thousand years, many of these structures remain standing to this day. Scientists have long wondered why the Romans’ blend of volcanic ash, rocks and lime has been able to stand the test of time, and after a new round of analysis they finally have their answer.

The researchers used a combination of X-rays, spectroscopy and electron microscope analysis to study the distribution of elements in samples of the ancient concrete. After taking a closer look at the concrete, the researchers were able to identify a rare mineral called aluminous tobermorite that had formed powerful interlocking crystals throughout the concrete mix. As they grew, these crystals caused the concrete to get stronger with time, allowing it to retain its structural integrity for thousands of years.

So what caused the strengthening  tobermorite crystals to form?

In fact, it was prolonged exposure to seawater. Rather than corroding the Roman concrete, the seawater triggered a chemical reaction in the lime which caused the crystals to grow and spread through the concrete. Simply by chance, the unique combination of volcanic ash, lime and seawater caused the ancient Roman concrete to grow stronger with time.

“Contrary to the principles of modern cement-based concrete, the Romans created a rock-like concrete that thrives in open chemical exchange with seawater,” explained lead study author Marie Jackson in an interview with BBC.

Now, the researchers are looking for ways to implement the unique chemical properties of ancient Roman concrete into new structures such as the Swansea Bay Tidal Lagoon in Wales. This may be easier said than done, however, as the type of volcanic rock present in Roman concrete is hard to come by in many parts of the world. The Romans were lucky enough to be situated in a place where all the elements for their super-strong concrete just happened to be readily available.

Researchers are 3D Printing a Reinforced Concrete Bridge

Researchers are 3D Printing a Reinforced Concrete Bridge3D printers are useful for more than just making small plastic parts. Recently, a team of researchers at the Eindhoven University of Technology in the Netherlands began 3D printing reinforced concrete components for a cycling bridge in an effort to test out new applications for 3D printing technologies.

In fact, this isn’t the first time engineers have 3D printed a concrete structure. Last year, the city of Madrid unveiled a 3D-printed concrete pedestrian bridge that was hailed as an engineering milestone. The cycling bridge in the Netherlands will take things a step further, however, by incorporating steel reinforcement cables into the design.

These steel cables will also be printed in conjunction with the concrete components. This process will provide the bridge with added stability, because the steel and concrete parts will be “pre-stressed” together. The bridge will also require far less concrete than a conventional bridge, because 3D-printing is less resource-intensive than pouring concrete into a mold.

As a proof of concept for their design, the researchers built a 1:2 scale model of the bridge that was able to hold a load of more than 4,400 pounds. The next step is to complete the full-scale construction and put the 3D-printed bridge to work.

It’s not clear whether this bridge-building technique could be adapted to accommodate vehicle traffic, but with additional research and development 3D-printed structures could become much stronger in the future. Someday, architects may even be able to design full-blown buildings with 3D-printed concrete.

Need a load of concrete for your next big project? Our all-wheel-drive buggy can bring the concrete right to you. Give us a call at (201) 797-7550 today to get started.

Engineers Develop New Technique to Create Concrete in Space

Engineers Develop New Technique to Create Concrete in SpaceNASA is hoping to send humans to Mars by the time 2030 rolls around. SpaceX CEO Elon Musk is hoping to send them to the “Red Planet” even sooner than that. But will humans actually be able to survive and settle on Mars?

There are a number of important developments and innovations humans will need to successfully settle on Mars in the future. For starters, scientists need to figure out a way to create thousands of tons of concrete on the surface of a distant planet so that astronauts can make their homes in space. Mars is frequently subjected to lethal doses of radiation and micrometeorites that are capable of doing significant damage to fragile structures. With these dangers in mind, humans will need a great deal of concrete to protect structures on mars, the moon and other planetary bodies.

Now, in an attempt to make concrete in space, NASA is collaborating with Stanford School of Engineering professor Michael Lepech. It would be impossible for NASA to ship the products necessary to create concrete to Mars, so Lepech and NASA researcher David Loftus have come up with a possible solution. They have discovered a way to combine animal proteins with the type of extraterrestrial soil commonly found on Mars to create concrete that is, thus far, as strong as the concrete used to make sidewalks and patios here in the U.S.

Researchers are still testing it out—it appears to be strong enough to withstand micrometorite impacts and protect astronauts from radiation—but the hope is that this type of concrete could eventually be used on Mars and also incorporated into buildings, roads, and more on Earth. It’s exciting to hear about the progress Lepech and Loftus have made in such a short amount of time.

At Bergen Mobile Concrete, We’ve been supplying businesses and individuals in Bergen County, New Jersey with concrete for almost 30 years now, and we can set you up with as much concrete as you need for your next project. Call us at 201-797-7550 today to schedule a concrete delivery.

Add Some Color to Your Concrete

Add Some Color to Your Concrete When you think “concrete,” do you automatically picture a boring gray color? We have good news: gray isn’t the only option when it comes to concrete, so if you’re hoping to use it in an interior or exterior remodel, it’s time to reconsider your design plans and think about adding in some colored concrete.

Contractors started using colored concrete back in the 1950s, when synthetic iron oxide was mixed in with concrete powder to give it a colorful hue. In most cases, you can easily obtain an earthy color, like brown and red, by using regular gray concrete; but, if you want a brighter color, you can mix in white cement instead, which gives you a wider range of color possibility.

For DIY projects, most concrete colors can be purchased at your local hardware store; look for bottles of liquid cement color.

If you’re working on a larger project, there are a few different methods used by contractors to obtain a colored concrete look. First is integral coloring, where a liquid or powder color is added and mixed with the concrete inside the truck.

Shake-on coloring is the application of finely ground pigments and dry cement onto freshly-placed wet concrete. With this method, since the color is only mixed into the top layer of cement, grinding or polishing will damage the color.

Acid staining is another method for achieving a colored concrete, and it’s done after the concrete has been poured and dried. Acid is painted onto the concrete surface, and a chemical reaction results in a mottled color.

Acetone dyes are another option: an acetone dye would be applied once the concrete has set and been polished, but acetone is dangerous for indoor use.

Water-based dyes are a safer option. You can use this method to paint patterns into the concrete, so design-wise this could be the right choice for you. Using the other methods of concrete coloring may not give you the option of creating a detailed design in the finished product.

If you’re interested in working with concrete experts to install colored concrete in your home, call Bergen Mobile Concrete today at 201-797-7550 or click here for a quote.

Futuristic Concretes Aim to Melt Away Snow and Ice at Airports

In the wintertime, it’s important for airports to do whatever they can to keep snow and ice off runways and other concrete surfaces that are used on the perimeter of the property. Snow and ice can cause severe delays and, in some cases, it can even make it impossible for flights to take off and land at airports. It’s why a team of researchers at Iowa State University have come up with a possible solution for clearing snow and ice off concrete surfaces quickly and easily.

Snow Removal at AirportsIowa State professor Halil Ceylon and his team have created a new kind of electrically conductive concrete that is able to melt away snow and ice without any effort on the part of people. As New Atlas reports, Ceylon and his team have installed some of this concrete at Des Moines International Airport in an effort to test it out and see how it works.

The top layer of the concrete includes 1 percent carbon fiber and a mixture of cement, sand and rocks that is designed to house six electrodes that are connected to a power supply located in a hangar at the airport. When the electrodes are turned on through the use of an app, they generate an electrical current which heats the surface of the concrete up and makes it warm enough to melt away any snow or ice on top of it. Ceylon and his team have also tinkered with the concrete to ensure that it doesn’t get too hot and that the electrical current isn’t so high to lead to any electrocution hazard.

While the researchers aren’t yet sure if it would be practical to use their electrically conductive concrete on runways at airports, they are confident that it could be used in congested areas of the airport like aprons and sidewalks. This would help maintain common and high-traffic areas around the facility, reducing maintenance needs and improving overall efficiency and safety.

Ceylon isn’t the only one working on a special concrete that would be able to clear snow and ice, either. University of Nebraska-Lincoln professor Chris Tuan has also created a conductive concrete that has steel shavings and carbon particles in it. This allows it to conduct electricity and get warm enough to melt any snow and ice that lands on top of it. This material was tested last year as part of a series of ongoing testing conducted under an FAA program, reports New Atlas.

With snow now largely out of mind for the season, at Bergen Mobile Concrete, we’re thinking forward to concrete needs for the rest of the year ahead. If you have a project coming up, we can bring an exact amount of concrete to you whenever and wherever you need it. There’s no need to pay for more than you need when you work with us – we’ll arrive and mix on site the exact quantities that you need. Learn more or schedule a delivery today by calling us at 201-797-7550.