How to Maximize the Lifespan of Your Concrete Driveway

How to Maximize the Lifespan of Your Concrete DrivewayThanks to their exceptional durability, concrete driveways typically last years longer than driveways paved with asphalt. Concrete is also stronger than asphalt, which can be beneficial if you regularly park heavy vehicles or equipment in your driveway.

That said, no paving material is completely impervious to the elements. Over time, excessive wear can cause concrete to crack and spall, spoiling its appearance and reducing the expected longevity of a driveway. The good news is, there are a few simple steps every homeowner can take to make sure their concrete driveways remain in good condition for many years to come.

Apply a Sealcoat

This is perhaps the single most effective thing you can do to protect your driveway from the elements. A sealcoat prevents cracking by protecting the surface of the concrete from moisture penetration. Ideally, concrete driveways should first be sealed a few months after they’re paved, and then resealed at least once every two years.

Make Repairs Early

Sooner or later, you’ll start to notice small cracks forming on the surface of your driveway. By filling these minor cracks with an epoxy injection, you can prevent them from becoming much larger cracks in the future. It’s much easier and more cost-effective to make these minor repairs rather than wait for them to become more serious issues.

Avoid Chemical Treatments

De-icing chemicals make it easier to shovel your driveway in the winter, but they can also accelerate wear on concrete. Instead of using rock salt or other harsh chemicals on your driveway, opt for gentler alternatives like sand, alfalfa meal or cat litter to give you some extra traction in snow and ice.

Invest in Professional Paving

A concrete driveway’s lifespan will depend largely on whether or not it’s properly installed. Concrete paving might look pretty straightforward, but getting the job done right is easier said than done. If you haven’t had much experience working with concrete in the past, it’s typically best to leave driveway paving to the professionals. This way, you can be completely confident in the structural integrity of your new driveway.

Researchers Use Fungus to Create Self-Healing Concrete

Crack in Concrete DrivewayDo you have an old concrete driveway that’s starting to crack from years and wear and tear? At this point, you might be thinking about tearing it up and repaving it with fresh concrete.

But what if we told you a group of scientists is developing a new “self-healing” concrete that could stop small cracks from becoming huge fissures?

Recently, researchers from New York’s Binghamton University teamed up with Ning Zhang of Rutgers University to create a new kind of concrete that uses fungus to repair itself. By incorporating the fungus Trichoderma reesei into their concrete mix, the researchers were able to create paved surfaces that automatically re-seal themselves as small cracks develop.

The fungal spores lay dormant at first, but as soon as micro-cracks start to form in the concrete, the spores spring into action by mixing with water and oxygen to create calcium carbonate, a hard chemical compound that seals these tiny cracks before they become any larger.

The researchers are still perfecting their product, so you won’t be able to take advantage of it just yet. But at some point in the not-so-distant future, you might be able to repave your driveway or sidewalk with a new type of concrete that is extremely resistant to cracking. Who would’ve thought that a fungus could make concrete even more durable than it already is?

Ready to revitalize that crumbling old driveway? Our mobile mixers and buggy trucks make it easy and affordable to repave concrete surfaces such as patios, driveways and more. Give us a call to schedule your appointment today!

What Is Concrete Spalling and How Can You Prevent It This Winter?

What Is Concrete Spalling and How Can You Prevent It This Winter?Concrete driveways are known for being extremely durable and long-lasting, but they can still be damaged in extreme weather conditions. In the winter, when temperatures fall below freezing and snow accumulates on surfaces, concrete driveways can be more likely to experience environmental damage.

One fairly common type of damage that can occur during the winter is called spalling.

Also known as scaling, spalling occurs when the thin top layer of concrete chips or flakes away from the rest of the paved surface. When scaling becomes widespread, it can eventually expose the aggregate and leave the driveway vulnerable to further damage. In the past, you may have noticed this spalling phenomenon on worn concrete sidewalks that haven’t been repaved in a while.

The good news is, there are steps you can take to prevent spalling on your driveway this winter.

You can start by sealing your driveway to add an extra layer of protection in harsh weather. Sealing products are a great investment that can extend the lifespan of your driveway and prevent environmental damage such as spalling and cracking.

You should also try to limit your use of rock salt and other de-icing chemicals on the driveway. These products do a great job of melting ice on surfaces, but their harsh chemical compositions can accelerate wear on concrete driveways. Instead, use gentler alternatives such as sand, cat litter or alfalfa meal to increase traction on your driveway without causing damage.

All it takes to prevent spalling is a little preparation! Need a hand with your next concrete paving project? Give us a call today to get started!

Researchers Develop New Wear-Resistant Concrete Treatment

Researchers Develop New Wear-Resistant Concrete TreatmentConcrete is a famously durable building and paving material, but even the most robust concrete mix can be damaged by prolonged exposure to heavy wind and rain. Harsh environmental conditions can accelerate concrete deterioration, reducing the effective service life of concrete structures and paved surfaces.

Engineers have been experimenting with ways to weatherproof concrete for decades.

Most of these weatherproofing techniques have involved applying protective materials to the finished concrete, but these treatments tend to be highly toxic and bad for the local environment. Recently, however, a group of researchers at Brunel University London developed a creative new way to protect concrete from wind and rain without utilizing toxic chemicals.

This technique utilizes a crystallizing admixture in conjunction with a wax-based curing agent. First, the crystallizing admixture is applied to fresh, uncured concrete. Then, after about an hour, the curing agent is applied to the concrete as well.

“The material works by absorbing water that exists within the concrete to form crystals,” said head researcher Mazen Al-Kheteen in an interview. “Whenever the crystals are formed they line the pores of the concrete, allowing it to breath. It also works on repelling water that tries to penetrate through.”

Al-Kheteen and his team hope that their environmentally-friendly weatherproofing treatment will save companies valuable time and money by reducing the amount of maintenance that is required to maximize the lifespan of concrete structures. The treatment could be particularly cost-effective because it can be applied on both wet and dry concrete surfaces “without affecting its performance.”

The research team’s weatherproofing treatment is still in development, but preliminary results have been very promising. Before too long, it could become a readily available option for concrete projects in areas prone to harsh weather conditions.

MIT Students Strengthen Concrete With Recycled Plastic

MIT Students Strengthen Concrete with Recycled PlasticConcrete mixtures have evolved quite a bit over the course of the last several thousand years. Whereas the ancient Romans added volcanic ash their concrete to allow it to set underwater, modern concrete often features chemical admixtures to control its hardening rate and tensile strength. Engineers are always looking for ways to make stronger, more durable concrete mixtures, and a team of MIT undergrads may have just made a surprising new breakthrough.

The students set out to make industrial concrete stronger and more-environmentally friendly by experimenting with different additives. In their preliminary research, the students found that some types of plastic become stronger when exposed to gamma radiation. This gave them an idea: Why not use plastic bottles from the local recycling center to create a strengthening agent for their concrete mixture?

After developing their hypothesis, the students went to work gathering recycled plastic bottles and crushing them into fine particles with a ball mill and hand tools. Then, they used a cobalt-60 irradiator (which is often used to decontaminate food in commercial settings) to bombard the crushed plastic with gamma rays. After adding the irradiated plastic to a standard concrete mixture, the students ran a series of tests and found that the concrete was 15 percent stronger than their control samples.

“We know that the plastic makes it denser and forms particular crystalline structures in the material that make the final concrete stronger,” said assistant professor Michael Short in an interview.

Now, the team of students hopes to refine their technique and explore ways to make the plastic-infused concrete marketable to construction companies.  They’re currently working on a proposal to the National Science Foundation for additional funding. With continued research and development, the students may be able to create an innovative new type of exceptionally strong, eco-friendly cement.

Swiss Researchers Develop Ultra-Thin Concrete Roof Design

Swiss Researchers Develop Ultra-Thin Concrete Roof DesignConcrete is one of the oldest building materials in the world, and yet engineers are still finding creative new ways to incorporate concrete into their industrial designs. At ETH Zurich in Switzerland, for example, one group of researchers recently built a prototype roof design using a curved concrete that’s just 5 cm thick on average.

As you might expect, creating an ultra-thin concrete roof with dramatic postmodern curves is easier said than done.

The project was made possible thanks to advanced computer algorithms that were used to distribute forces evenly across the roof’s curves and contours. Instead of using a foam or wooden mold, the researchers applied the concrete to a flexible net of steel cables which was stretched and bent into the desired shape.  The roof also required a carefully-controlled concrete mix that could be sprayed on in an application process developed specifically for this project.

The end result is an eye-catching concrete roof that seems to defy the laws of physics.

At its thinnest point, the concrete is just 3 cm thick. Next year, the final version of the roof will be installed on an eco-friendly apartment complex in Zurich. The roof will also include a network of energy-efficient heating and cooling coils sandwiched between two layers of the ultra-thin concrete, and a photovoltaic solar film on top. Although the prototype design took about six months to get right, the researchers are hoping to build the final version in just eight to 10 weeks.  It’s an ambitious plan that could help the research team land more contracts for their thin concrete designs in the future.

Stay tuned for more updates on the latest developments in concrete design and construction from the folks at Bergen Mobile Concrete!

Yellowstone Installs New Walkways Made of “Thirsty” Concrete

Yellowstone Installs New Walkways Made of “Thirsty” ConcreteMost people visit Yellowstone National Park to take in the natural scenery and get away from the usual hustle and bustle of tech-filled lives. But as it turns out, Yellowstone is employing an interesting new concrete technology which could soon become a popular paving method elsewhere as well.

Yellowstone officials recently installed a 4,000-square-foot walkway in the park made of a unique new type of concrete called Flexi-Pave, according to Business Insider. Flexi-Pave consists of a mixture of tires, stone and a proprietary binder, and one square foot of the concrete is capable of absorbing an astounding 3,000 gallons of water per hour. This comes in handy in Yellowstone, since the park contains about 66 percent of all the geysers on the planet. The park’s new “thirsty” pathway absorbs water and distributes it back into aquifers before it can mix with local contaminates, which is a really big benefit in the ecologically-sensitive environment of Yellowstone.

Yellowstone might be the most notable example of Flexi-Pave’s applications, but it’s far from the first time the concrete has been used as a paving material. According to Kevin Bagnall, founder and CEO of the company that created Flexi-Pave, at least 200 cities throughout the US have begun using the eco-friendly concrete in their own paving projects.

At Bergen Mobile Concrete, we’re constantly monitoring the latest trends in construction in an effort to better serve our customers. Need a hand with your next concrete paving project? Give us a call at (201) 979-7550 today to get started!

Safety Tips for Working With Concrete

Safety Tips for Working With ConcreteAre you planning on pouring a new concrete driveway, patio or walkway outside your home or business? Concrete is an excellent option for all these applications and more. But before you start a DIY paving project, it’s important to take the proper safety precautions. Here are a few general guidelines that you should follow at all times.

Wear personal protective equipment.

When you work with wet concrete, you can sustain skin irritation and even burns if you aren’t careful. To reduce the risk of these issues, you should always wear personal protective equipment such as waterproof gloves, a dust mask, goggles and tall boots that cover your ankles.

Lift concrete carefully.

Whether you are removing slabs of old concrete or transporting wet concrete to your work site, be careful to lift properly so that you don’t injure yourself in the process. This means doing the bulk of the lifting with your knees, rather than your back. Our all-wheel-drive buggy can help you transport concrete safely as well.

Avoid exposure to concrete dust.

These paving projects can generate a lot of airborne concrete dust. When tearing up old concrete, you can keep dust to a minimum by wetting the surface before you start sawing or grinding. Be sure to wear your goggles and a dust mask or respirator as well to prevent dust from getting in your eyes, nose and mouth. Once you’re done working, take a shower to remove any residual dust left on your body. Launder your work clothes separately from other items to prevent cross contamination.

Need a hand with your next home improvement project? At Bergen Mobile Concrete, we’d be happy to help. Give us a call today at (201) 797-7550 to get started!

Save Time and Money With Our Metered Mobile Concrete Mixers

Concrete Pouring in Cold WeatherDo you need concrete for your next big job? You could go ahead and order a traditional ready mix concrete truck and have the concrete delivered to you. But the problem with this approach is that you will have to estimate how much concrete you need, and then hope that you don’t order either too much or too little material for the job. If you order too much, the excess constitutes a waste of money and resources for your business. If you order too little, on the other hand, the cost of ordering a second truck can be quite expensive as well.

Fortunately, the solution to this problem is surprisingly simple.

At Bergen Mobile Concrete, you can order a metered mobile concrete mixer that can mix just the right amount of concrete for your project on site. With a metered mixer, you’ll never have to pay for more concrete than you need. You also won’t have to stop in the middle of a project and wait for more concrete to arrive. Bergen Mobile Concrete will bring the maximum amount of concrete that you think you might use, mix it right on site and charge you for the exact amount you use.

In addition to their money-saving potential, metered mobile concrete mixers have a few other important benefits as well.

With our mobile mixer, we’re able to mix fresh concrete so that you know you’re getting the best possible material for your project. You can also still customize your concrete color and use admixtures just like you would be able to do with a concrete truck. It’s just a much simpler way to get the concrete you need, wherever you need it.

Interested in learning more about our same day concrete delivery services? Give us a call today at (201) 797-7550 to speak with a representative!

Researchers Solve Mystery Behind Ancient Roman Concrete

Researchers Solve Mystery Behind Ancient Roman ConcreteModern cement-based concrete might be pretty durable and long lasting, but it’s got nothing on the concrete used to build piers, sea walls and harbors in ancient Rome. Despite being partially submerged in corrosive saltwater for more than two thousand years, many of these structures remain standing to this day. Scientists have long wondered why the Romans’ blend of volcanic ash, rocks and lime has been able to stand the test of time, and after a new round of analysis they finally have their answer.

The researchers used a combination of X-rays, spectroscopy and electron microscope analysis to study the distribution of elements in samples of the ancient concrete. After taking a closer look at the concrete, the researchers were able to identify a rare mineral called aluminous tobermorite that had formed powerful interlocking crystals throughout the concrete mix. As they grew, these crystals caused the concrete to get stronger with time, allowing it to retain its structural integrity for thousands of years.

So what caused the strengthening  tobermorite crystals to form?

In fact, it was prolonged exposure to seawater. Rather than corroding the Roman concrete, the seawater triggered a chemical reaction in the lime which caused the crystals to grow and spread through the concrete. Simply by chance, the unique combination of volcanic ash, lime and seawater caused the ancient Roman concrete to grow stronger with time.

“Contrary to the principles of modern cement-based concrete, the Romans created a rock-like concrete that thrives in open chemical exchange with seawater,” explained lead study author Marie Jackson in an interview with BBC.

Now, the researchers are looking for ways to implement the unique chemical properties of ancient Roman concrete into new structures such as the Swansea Bay Tidal Lagoon in Wales. This may be easier said than done, however, as the type of volcanic rock present in Roman concrete is hard to come by in many parts of the world. The Romans were lucky enough to be situated in a place where all the elements for their super-strong concrete just happened to be readily available.